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Higgs potential in the SU(5) model 

T N Sherry? 
International Centre for Theoretical Physics, Trieste, Italy 

Received 8 November 1979 

Abstract. We re-analyse the Higgs potential of the SU(5) model where the Higgs sector 
contains fundamental and adjoint scalar field representations. Unlike previous analyses we 
discuss the conditions on the coupling constants which ensure that the potential is bounded 
from below. We examine the stationary points of the potential and derive the conditions 
under which they are minima. Using these results, we partition the coupling constant space 
into regions in which each of the different minima is lowest. Finally we state the correct limit 
in coupling constant space which gives rise to a large gauge hierarchy at the tree level, a 
result which has been overlooked in previous treatments. 

1. Introduction 

The unification of the weak and electromagnetic interactions (Weinberg 1967, Salam 
1968) within the context of a non-abelian gauge field theory is by now well established. 
It is also believed that the strong interactions are described by a non-abelian gauge 
theory, namely QCD (Marciano and Pagels 1978). Following the success of the earlier 
unification, many attempts have been made in recent years to embed the electroweak 
gauge group SU(2) x U(l)  and the QCD gauge group SU(3) within a single ‘unified’ 
gauge group (Pati and Salam 1973, 1974, Georgi and Glashow 1974, Fritsch and 
Minkowski 1975). Among the models produced, the relative simplicity of the SU(5) 
model (Georgi and Glashow 1974) has ensured its popularity as a candidate model. 

In all unified gauge theories vector meson masses are generated by the Higgs 
mechanism. This requires the introduction of scalar fields which develop vacuum 
expectation values (VEVS) as a result of minimising either the tree approximation or the 
quantum corrected effective potential. For grand unified models, such as the SU(5) 
model, the symmetry breaking must proceed in at least two stages, for example 

SU(5) -$ SU(3), x SU(2) x U(1) + SU(3), x U(1)QED. (1) 

This requires the introduction of more than one scalar field representation. For the 
SU(5) model it has been shown that the desired symmetry breaking can be achieved at 
the tree level using the fundamental and adjoint representations, i.e. 5 and 24 (Buras et 
a1 1978). 

The purpose of this paper is to re-examine the tree level Higgs potential of the SU(5) 
model, for the above choice of Higgs fields. Our interest in this re-examination arises 

t Address after 1 October 1979: Dept. of Mathematical Physics, University College, Galway, Ireland. 
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for the following reason. Elsewhere we have reported on a proposal of a model as the 
supersymmetric extension of the SU(5) model (Sherry 1979b). The minimisation of the 
Higgs potential in the supersymmetric model is not as straightforward as in the 
conventional SU(5) model (Buras et al 1978), as the parameters of the Higgs potential 
are not all independent, either of each other or of the Yukawa and gauge coupling 
constants. For this reason one is not free to choose the values of the parameters to give 
the desired symmetry breaking; rather, we must check if the given values of the 
parameters allow the desired symmetry breaking to occur. However, this requires that 
we know beforehand the parameter ranges for which the desired symmetry breaking 
occurs. To our knowledge this information is not available in the literature. It is our aim 
in this paper to provide this information. 

Our approach to this problem is straightforward. Given the form of the Higgs 
potential we first discuss the conditions under which it is bounded from below. We next 
discuss the various calculable stationary points of the potential. The conditions on the 
parameters are derived by ensuring that each solution exists and is a relative minimum. 
The latter requires the calculation of the Higgs boson (mass)’ matrix, all of whose 
non-Goldstone eigenvalues should be positive. The various conditions derived in this 
manner can be combined to give the partition of the coupling constant space into 
regions where the different types of symmetry breakdown occur. 

An important ingredient in the SU(5) model is the existence of a large gauge 
hierarchy. This is needed, for example, to suppress proton decay down to the present 
experimental limits. The supersymmetric SU(5) model must also allow such a large 
gauge hierarchy to occur. For this reason we investigate the limit which gives rise, at the 
tree level, to a large gauge hierarchy (Gildener 1976, Buras et a1 1978). To have a 
physically meaningful large gauge hierarchy, as recently noted (Sherry 1979a), we must 
ensure that the limit in which M H / M ~  >> 1 is achieved does not make M L  infinitesimal. 
Here we denote the heavy vector meson mass by MH and the light by ML. The resultant 
limit, which was overlooked in previous treatments of this question (Gildener 1976, 
Buras et al 1978), clarifies the manner in which a large tree level gauge hierarchy can 
occur in the SU(5) model. Of course, the stability of this large tree level gauge hierarchy 
under quantum corrections is still an open question (Gildner 1976, 1979, Namazie and 
Sayed 1978, Sherry 1979a). However, these ideas must also be applied if computing a 
large gauge hierarchy with quantum corrections included. 

The remainder of this paper is planned as follows. In 02 we introduce the Higgs 
potential, discuss its boundedness from below and derive the explicit form of the 
calculable stationary points. In § 3 we calculate the (mass)’ matrix of the Higgs bosons 
and derive the conditions under which the various stationary points are relative minima. 
In § 4 we analyse the many conditions derived, give the breakdown of the coupling 
constant space into regions where each of the different minima is lowest and also 
examine the large gauge hierarchy limit. Section 5 contains a discussion of the results 
we have obtained. Finally we include in an Appendix a derivation of some of the 
conditions necessary to ensure that the Higgs potential is bounded from below. 

2. Stationary points of the Higgs potential 

The simplest Higgs sector of the SU(5) model consists of two representations, 5 and 24 
scalar fields which we denote by H and A respectively. The desired chain of symmetry 
breaking for this model is that given in (1). It is the purpose of the Higgs potential to 
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yield this symmetry breaking. At the tree level the most general renormalisable Higgs 
potential is 

V ( H ,  A )  = -$N2TrA2+,u(TrA2)2+$bTrA4-$v2H’H+$A(H’H)2 

+ aH’HTrA2+ pH’A2H (2) 

where a reflection symmetry A + -A is also invoked (Buras et a1 1978). 
Before we proceed to minimise V ( H ,  A ) ,  we must restrict the parameters of the 

potential such that it is bounded from below, as otherwise V ( H ,  A )  does not have a 
minimum value. Ideally one should ask what are the necessary and sufficient conditions 
on the coupling constants a ,  b, A,  a and p which guarantee that V ( H ,  A )  is bounded 
from below. In practice, however, this is not feasible. Instead we ask the simpler 
question: what are the necessary and sufficient conditions such that V ( H ,  A )  is bounded 
from below as any pair of its arguments go to infinity? These conditions are very simply 
derived, and we refer the interested reader to the Appendix where we briefly sketch the 
derivation. The analogous conditions, when three or more of the arguments go to 
infinity, are neither simply derived nor very transparent. The weaker conditions which 
we use are, as a result, necessary but not sufficient to ensure that V(H,  A )  is bounded 
from below. 

The conditions give lower bounds on the allowed range of values of the coupling 
constants which occur in V ( H ,  A ) .  We can express them as follows: 

a+&b>O, a+$b>O, A > O ,  

min[a, a +$PI > max[-$[A ( a  + b)1”2,-$[A ( a  +:b)1”21, 

min[a +&p, a +A@]> -$ [ / \ (a  +&b)]1’2. (3) 

We should emphasise that the necessary and sufficient conditions, while being more 
stringent, would also be a lot less transparent. 

In the absence of the cross terms in V ( H ,  A),  i.e. when a = p = 0, the minimisation 
of V is straightforward (Li 1974, Buras eta1 1978). The least symmetric of the possible 
resulting vacua is invariant under SU(3) x U(l),  in which case the symmetry breaking 
(1) is realised. However, the resulting theory contains a surplus of zero-mass scalars. 
When we allow a and p to be non-zero, and not too large?, we expect that the vacuum 
will still be SU(3) invariant. For this reason we look for minima at which H and A take 
the form 

3 1  3 1  A = v diag (1,1,1, - Z - I E ,  - z + I E ) ,  (4) 

with h,  U and E real. In the context of the SU(5) model, a large gauge hierarchy at the 
tree level will require U >> h. In what follows we shall often implicitly assume this 

t As we let a ,  p + 0 the minima should go over smoothly to those which occur for a = p = 0. For a ,  p ‘large’ 
there may exist bifurcating solutions which are singular in a and p. The present analysis is unable to say much 
about such solutions or how large a and should be. 
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property, when both U and h are non-zero. In terms of h, U and E the potential is 

V ( h ,  U, E )  = -$(15 +~’)p’u~+&u(225 +30e2 + ~ ~ ) u ~ + & b ( l O S  + 5 4 ~ ’ + e ~ ) v ~  

( 5 )  2 2 2  -av2h2 + &A h4 + :a ( 1  5 + E ’ )  h ’U + i P  ( 3  - E )  h v . 
The stationary point equations for V ( h ,  U, E )  are 

v = O  or p 2 = $ ( 1 5 a  +7b)u2+(a  +&)h’+(a +gb)e2u2 

+&(a + b ) ~ ~ ~ ’ - $ p ~ h ’  +&a +$?)e2h2-&p2eZ,  (6) 

h = O  or v 2 = $ A h 2 +  15(a +&p)t1’-3P~~’-t(a +$P)E’u’ ,  (7 )  

-&h’/E +$(U  + b)E’U’. (8) 

U - 0  or e = h = O  or p2  = $(1 Sa + 27b)~’  + ( a  + $3)h2 

These equations yield at most seven different types of solution which we can classify as 
follows: 

I u Z O ,  E # O ,  h f O ,  
I1 u # O ,  c - h = O ,  
I11 u f O ,  E # O ,  h=O,  
IV u = O ,  E # O ,  h=O,  
V u = O ,  ~ “ 0 ,  h f O ,  
VI v - 0 ,  E # O ,  h f O ,  
VI1 0 = E = h  = O ,  

For types I1 to VI these equations can be solved exactly to yield the following solutions. 

E = ~ = O .  2 2 P 2  
U =  15a +7b’ 

For this solution the residual symmetry is SU(3) x SU(2) x U(1) .  

(10) 

(11) 

For this solution the residual symmetry is SU(4), while for types IV and VI the 
equations do not yield a unique solution for E .  

In the case of type I stationary points where U, E and h are all non-zero the equations 
are equivalent to two coupled cubic algebraic equations. It may, however, not be 
necessary to solve them exactly if a and p are small enought. In this case we can look 
for perturbative solutions of the stationary point equations, where the measure of the 
perturbation, E ,  is extremely small. If, in fact, we go to the limit E’u’<< ~ , E ~ u ’ < <  1 ,  E << 1, 
Eh’<:< 1, E2h2c  1 but E U ~  finite, the stationary point equations simplify to 

p2=$(15a +7b)t”+(a +&P)h2,  

Y’ = $Ah’ + 15(a + & P ) u ~  - ~ P E v ’ ,  
~@h2=E(10bU2+~@h2) .  

f See previous footnote 
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These equations yield as solutions the following expressions: 

v’ = P/N,  h 2  = Y / N ,  

where 

g = $ ( A  -9P2/10b)pZ-(tu + & P ) v 2 ,  

N=a(A - 9 ~ 2 / 1 0 b ) ( 1 5 a + 7 b ) - 1 5 ( ~ + & p ) 2 ,  

and 

9=$.(15~ + 7 b ) v 2 -  15(a +&$)(U*. 

For this solution the residual symmetry is SU(3) x U(1), and the symmetry breakdown 
occurs as shown in (1). 

Of the four non-trivial stationary points, the type I11 is not a candidate for the 
absolute minimum of V. This can be seen quite simply by evaluating V ( h ,  U, E )  at this 
stationary point. We find that V(II1) = 5 ,u4/(10a + 13b) and this is positive provided 
the solution exists. But, at the relative maximum V ( 0 ,  0,O) = 0, so it is clear that, at 
most, (111) can be a relative, but not absolute, minimum. On the other hand, at the 
remaining stationary points, 11, V and I ,  the potential is negative. 

Before proceeding to the evaluation of the Higgs boson mass matrix, to distinguish 
between minima, maxima and saddle points, we first consider the range of values of the 
coupling constants for which these solutions exist. For I1 and V, the conditions (3) 
derived earlier ensure their existence. For I it is not so simple. Two cases occur 
depending on the sign of (A - 9P2/ lob) .  When this is positive, the existence of the type 
I stationary points is assured when 

A-9p2/10b>0, 

3 
2 10 

7 I/’ - ‘ [ ( A - ~ ~ ) ( a f g b ) ]  9 P 2  < a + - p < m i n  

or 

3 9 P 2  a + - P > m a x  [lv’ - ( A--- 10 b >’$(. +& b)l’ 
10 

On the other hand, when A -9P2/10b is negative the solution is not a minimum, as 
we shall see in the next section. 

We now know the conditions necessary to ensure the existence of the stationary 
points, namely (3) and (15). Se we next examine the Higgs boson (mass)2 matrix to 
discover for which values of the parameters the different stationary points are minima of 
the potential. 

3. Higgs boson masses 

The stationary points of the Higgs potential which we found in 0 2 may be maxima, 
minima or saddle points. To distinguish these possibilities we must diagonalise the 
Higgs .boson (mass)’ matrix evaluated at each stationary point. The criterion for 
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minimality is that all the non-Goldstone masses be real, i.e. the non-Goldstone 
eigenvalues of the (mass)’ matrix are positive. 

To derive the Higgs field mass terms from the potential ( 2 )  we use the following field 
parametrisation: 

I A - ( A ) =  

Here we use latin letters i, j ,  . . , = 1 , 2 , 3  to denote SU(3)  indices. This parametrisation 
yields ten SU(3)  multiplets. In (16)  the V E V S  ( H )  and (A) are given by equations (4). 

It is now straightforward to extract from the Higgs potential the mass terms for the 
ten relevant SU(3)  scalar multiplets. They are 

f[ -p  ’ + (?a + 6b)u  ’ + ah ‘]TrA(8)’ 

+ [ -p  ’ + +( 1 5 ~  + 7b)u  ’ + ah’ + 26~u’IA: A, 

+ [ -p’ + f( 1% + 7b)u’ + ((U + 4P)h’ - 2 b ~ ~ ’ l A ; .  A, 

+[ -fv’+iAh’ + ($a + P)u’]H’. H -  ( @ h v / 2 J i )  ( H i .  A, +AL. H )  

+ [ - p 2 + f ( 1 5 a  +27b)u2+ ((U ++P)h’]ALA, 

- ( 3 / J 2 ) p h v ( H : A w  +ALH4) 

+ [-f v’ + :Ah’ + ?((U + &P)u’ + &IEV’]H& 

++[ -p2+$(15a + 7 b ) ~ ’ + ( ( ~  +&P)h’]A; 

+ f[ - p * + $( 1 . 5 ~  + 2 7 b ) ~  ‘ + ((U + 1P)h ’]At 

+ f[ - fv’ + :Ah’ +?((U +&?)U’ - $P~u’]p’ + ( 3 / h ) P h u p A ,  

+ JZ[&?h ’ - ( a  + ? b ) ~ u  ’IAoA, + J%(a + &P)hupAo. (17)  

In deriving this expression we have made use of the limit E << 1,  which is incorporated in 
the type I stationary point exhibited in 0 2,  to neglect contributions of the form E’U’ and 
E U .  For none of the three stationary points, I, I1 and V, would such terms make a 
contribution. 

Substituting in (17)  the explicit solutions derived in § 2 we are led to the following 
Higgs masses for each type of solution. 

Type 11 : 

m[A(8)]’= $bu2, m(Aw)’=m(A~)’= lOb~’,  

m(Ao)’=(15a +7b)u2,  m(A,)’ = m(A,)’= 0 ,  
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The mass relations between the various SU(3)  multiplets reflect the residual SU(3)  x 
SU(2)  symmetry of the vacuum. 

Type V :  
m [ A ( S ) ] ’ =  m ( A x ) 2  = a h 2 - p 2 ,  

m(A, )2  = m(A,) ’= (a + $ p ) h ’ - p ’ ,  

m (HI’ = m (H~)’ = 0 ,  m(p) *  = ;Ah’, 
and in the (Ao, A, )  system the two eigenvalues are 

D h 2 - p 2  and (a + $ p ) h 2 - p 2 .  

Here also the mass relations reflect the residual SU(4)  symmetry. 

Type I : 
m [A(8) ] ’  = $bu2 - hph’, m(A,)’ = 0. 

In the (A,,, H) system the two eigenvalues are: 

0 and - { p ~ ~ + & ( 9 / 3 / 4 6  -1)ph’ .  

In the (Aw, H4) system the two eigenvalues are 

0 and 10bv’ + 4 ( 1  + 9 p / 4 b ) p h 2 .  

In the (Ao, A,, p )  system the three eigenvalues are, provided b # 0 and b # 5a t, 
9 p 2  30(a+3/3/10)’ 
-107)- 15a + 7 b  

10bu2+i(1 + 9 p / 4 b ) @ h 2 ,  

h’. 
30(a + 3p/10)’ 

15a + 7 b  (15a + 7 b ) u 2 +  

In this case the mass relations reflect the residual SU(3)  symmetry. 
These results allow us to determine for what values of the coupling constants the 

three stationary points are relative minima. The conditions are derived by requiring the 
non-zero Higgs boson (mass)’ values to be positive. For the three solutions we find, 
over and above the conditions derived in Q 2, 

11: b>O, min[(l5a + 2 / 3 ) v 2 ,  (15a + f p ) v ’ ] >  Y’, (21 )  

V: min[ah’, (a + 8 p ) h ’ ] > g 2 ,  (22) 
I: A - 9 p 2 / 1 0 b > 0 ,  5 bv’ - Zph’ > 0 ,  b # 0 ,  

lobu’ + $ U +  9 p / 4 b ) p h z  > 0, -2p~’ + f ( 9 @ / 4 b  - l)Oh2 > 0 .  (23 )  

t If b = 0, but a f 0, the eigenvalues are 15avZ+ ( 2 / a ) ( a  +&jP)’h’ and s ( 3 / h ) p h v { l +  (b/u)[ . . . I-’}. The 
oveiall *sign implies that at least one (mass)’ is negative and such astationary point cannot be a minimum. On 
the other hand, if b = 5a Z 0 the eigenvalues are 10bv2(twice) and h’[$(A - 9pz/10b) - (3/b)(or +&p)’]. The 
positivity conditions derived in this case will be as in the general case, subject to b = 5a. 
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These conditions must now be analysed together with conditions (3) and (15)  if we are to 
have a clear set of conditions on the coupling constants for each of the three minima. We 
carry through this analysis in the following section, where we also discuss the limit, 
for the type I minimum, which yields a large gauge hierarchy. 

4. Analysis of the conditions and the large gauge hierarchy limit 

In the previous sections we have examined some of the stationary points of the SU(5) 
model Higgs potential V ( H ,  A ) ,  and derived the conditions which must be satisfied if 
they are to be minima. We also derived a partial set of conditions on the parameters of 
V to ensure that the potential is bounded from below. We now combine together all of 
the different conditions to list the regions of coupling constant space in which each of the 
various minima is lowest. Unfortunately, we cannot assert with full rigour that, in each 
such region, the lowest minimum is the absolute minimum of V because of the 
approximation we have used to derive the explicit form of the type I solution. 

Our first step is to rewrite the boundedness conditions (3). We can partition the 
coupling constant space into four subspaces according to the signs of p and b. In these 
four subspaces we find 

> O ,  b > 0 ;  A > O ,  a+&b>O, CY > --;[A ( U  + b)]”2, 

a +&p > -;[A (a  +&b)]1’2, 

p > O ,  b CO: A > O ,  a+$b>O,  a > -;[A ( a  +zb)]1’2, 

p < O ,  b < O :  A > O ,  a +zb >0,  a +$$ > -&A(a +zb)]1’2, 

p CO, b > 0:  a +&b >O,  A > O ,  a ++j3 > -;[A ( U  + b)]’”, 

a +&? > -;[A(u +&b)]’”. 
(24)  

By combining these inequalities with the positivity conditions of li 2 and the mass 
conditions of § 3, We can give the conditions such that the three stationary points are 
minima. Let us first examine types 11 and V. 

Type 11: 

A > O ,  b > 0 ,  a+&b>O; 

i fp<O:  a+& > ( v 2 / 2 p 2 ) ( a  +&b),  +;p > -;[A ( U  + b)]’I2, 

i fp>O:  a +&? > ( v 2 / 2 p 2 ) ( a  + A b ) ,  a > -;[A ( a  + b)]’’2. (25)  

Type V :  

p > O ,  b >0: 

p € 0 ,  b >0: 

p >o, v < 0:  

p<O,b<O: A >0, a +$b >0, a +$p >p2A/2v2 .  

A > O ,  a +&b >0,  

A >0, a +&b >0,  

A > 0, a + f b  >0, 

a > p2A/2v2 ,  

a +$@ > p 2 A / 2 v 2 ,  

a > p 2 A / 2 v 2 ,  
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The type I case requires a little more analysis. Consider the final inequality of (23) .  

O<b<$P and ~ ~ / h ~ < & ( 9 P / 4 b  - 1). (27)  
The second inequality of (27)  implies that E 2;. However, the approximation we have 
used to derive our explicit form of this solution breaks down if E is so large. Therefore 
we must have p < 0. Now consider the second inequality of (23)  if b < 0. Again, we find 
v 2 / h 2  < 3@/25b, which gives us E >$, and the approximation breaks down. Therefore 
to have solution I defined we must have p < 0 < b. The combined conditions can be 
written as 

If p > 0, then we find that 

A > 9p2/10b,  a+&b>O, p<O<b,  

(Y +io > -;[A (U  + b)]’”, (28) 
and, of course, we must also ensure v 2  >> h 2  so that the approximation we have used is 
valid. This limit we call the large gauge hierarchy limit. 

Before discussing the large gauge hierarchy limit, we can display the regions of 
coupling constant space in which each of I, I1 and V is the lowest of the three minima. In 
fact, there is very little overlap of regions of definition. Types I1 and V may be defined in 
the same region. To discriminate between them we note that at  these points the 
potential takes the following values: 

V(V) = -u4/4A. 1 P 4  V(I1) = -- - 
4 a + & b ’  

The resulting partition of the coupling constant space is depicted in table 1.  

Large gauge hierarchy limit: There now merely remains the question of the large gauge 
hierarchy limit for the type I minimum. The heavy and light gauge boson masses are 
given by 

M L  - g 2 v 2 ,  MZ - g 2 h 2 ,  

provided the approximation is valid. We see then that the approximation we have used 
is 

(31)  
In some treatments of the gauge hierarchy question (31)  is used as the gauge hierarchy 
condition. Explicitly we have 

R = M&/MZ >> 1. 

R--- U’ $(A - 9 p ’ / l O b ) - ( ~ ~ / / - ~ ) ( a  +&p) 
h 2  - ( ~ ~ / 2 p ’ ) ( l 5 ~  + 7 b ) -  15(a +&p) ’ (32)  

Clearly we can achieve R >> 1, within perturbation theory, by letting (a +& p )  go as 
close to ( u 2 / 2 p 2 ) ( a  +& b )  as we wish. Referring back to the conditions (28) ,  however, 
we see that we must first require 

We have already incorporated these results in table 1. 
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P 

>O 

<O 

Table 1. 

b Minimum Qualifying conditions 

<O V 
cL2 - a > y A  
2 v  

7 cc4 

7 P 4  

a+-b>-A 
15 v4 

V 

>o . 

a+-b<--;ih 15 v 
I1 

<O V 
4 p2 a + - @ > T A  
5 2 v  

7 P4 

7 F4 

9 P 2  

a + - b > a h  
15 v 

V 

>O I1 a + - b < T A  15 v 

I A > - -  
10 b 

As was recently pointed out (Sherry 1979a) the condition (31) is necessary, but not 
sufficient, to yield a physically meaningful large gauge hierarchy. We must also examine 
M t  and ensure that it does not become infinitesimally small in the above limit. Because 
of (30) we consider 

2 $v2(a +&b) -p2(a  +&I) 
h =  

$(A -9p2/10b)(a   CY +&p)2' (34) 

It is now straightforward to show that we must supplement the R >> 1 limit by requiring 
a +&b + 0 ,  w 2  -+ CO, or both, to ensure that h 2  does not vanish. Thus the physical large 
gauge hierarchy limit is 

CY + & p + ( v 2 / 2 w 2 ) ( a  + A b )  

and a +&b + 0 or p2  + 00 or both. (35) 

5. Discussion of results 

The initial aim of this investigation was to examine the Higgs potential of the SU(5) 
model to find its various absolute minima for differing values of the many free 
parameters. Unfortunately, the defining equations for the least symmetric stationary 
point are equivalent to two coupled cubic algebraic equations, which cannot be solved 
exactly (Salmon 1875). However, we have constructed a perturbative solution for this 
case. When the cross terms in the Higgs potential vanish there are only three possible 
minima, namely the three we have examined with a = p  = 0. When the coupling 
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constants of the cross term are ‘small’ we would expect the perturbative solution 
referred to above to be the lowest of the type I stationary points. Of course, it may be 
unnecessary to have this cross term ‘small’, but until we have understood the other 
non-perturbative solutions of this type we cannot be more quantitative. 

As a result, in this paper we have derived, as fully as possible, the conditions on the 
parameters of the potential necessary for each of the candidate minima to be the lowest. 
In this analysis we did not use the most stringent conditions on the coupling constants to 
ensure that the Higgs potential was bounded from below. But since this meant a slightly 
weaker set of lower limits, it will not affect our results if we ensure that the parameters 
are kept sufficiently far above these lower limits. As we saw, this can be done for the 
three minima examined. The results of this analysis are summarised in table 1 where we 
have given the regions of coupling constant space where the different minima are 
lowest. 

Let us now consider each of the minima in turn. Type V corresponds to SU(5) 
breaking down to SU(4). In the context of the SU(5) model this minimum is uninteres- 
ting. Also we note that the important two conditions for this solution to be lowest are of 
the form a or a +zp > p2A/2v2 and a +&b > p4A/v4.  If p 2  is much greater than v2  the 
coupling constants lie well outside the range of validity of perturbation theory. 

The type I1 solution is more interesting from the physical point of view. It 
corresponds to SU(5) breaking down to SU(3) x SU(2) x U(l),  the first step in the 
desired chain of symmetry breaking for the SU(5) model. The scalar field masses, 
shown in (18), are all of the same order of magnitude. This minimum at the tree level 
may be useful as the starting point in the application of Weinberg’s approach to the 
derivation of a large gauge hierarchy (Weinberg 1979). As seen from the final column 
of table 1,  the region where this minimum is lowest borders that where the type I 
solution is the lowest. The possibility exists that the tree potential minimum may be 
type 11, but the quantum corrections will shift the minimum over the border to a type I, 
for which a large gauge hierarchy may exist. 

If, however, the objective is to have a large gauge hierarchy at the tree level, then we 
must restrict the parameters of the potential as shown in table 1, and conditions (28), to 
ensure that the type I minimum is the lowest. As we have also seen, we must 
supplement the conditions to ensure that a physically meaningful large gauge hierarchy 
exists, as shown in (35) at the end of the previous section. The effect of the second limit 
in (35) is that (v2/2p2)(a+&b)  becomes very small, though positive. Thus the 
cross-term coupling constant (a  + & p )  must be less than, but infinitesimally close to, 
this very small positive number. 

That the cross-term coupling constant should be infinitesimally small to allow a true 
large gauge hierarchy at the tree level is an unexpected result. It is interesting because 
originally in deriving a large gauge hierarchy at the tree level one would set this mixing 
term to zero. It was then pointed out that to allow for more generality one should not 
restrict the theory in this way (Gildener 1976). The above result shows that if one 
arranges a true large gauge hierarchy at the tree level, this restriction is forced upon us. 

For this solution, in the large gauge hierarchy limit, the various Higgs field masses 
are, essentially, ?bu2, -?$U’, 10bu2, (15a +7b)u2 (each of these with negligible O(h2)  
corrections) and one of order h2.  If we supplement the large gauge hierarchy limit by 
a +Ab +O, as allowed by ( 3 3 ,  there will be two light Higgs fields, namely two 
independent combinations of (Ao,  A ,  and p ) .  On the other hand, if instead we use 
p2  + 00, then only one combination of (Ao, A,,  p )  is light corresponding to the Higgs 
field of the standard model of the electroweak interactions. The remaining question 
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concerns whether -&hz is large or small. The large gauge hierarchy limit requires that 
a +&p be very small and Rositive. This does not require a and p to be separately 
infinitesimal so that this mass is, in fact, very large. It is interesting to compare these 
results with those previously derived (Buras et a1 1978), where the question of 
supplementing the condition R >> 1 to yield a large gauge hierarchy was not considered. 

Apart from the obvious interest in these results as clarification of the various tree 
level minima and the limit required to ensure a large tree level gauge hierarchy, they are 
of interest within a different context. We have recently proposed a model as the 
supersymmetric extension of the SU(5) model (Sherry 1979b). However, as in all 
supersymmetric models, the parameters a, b, a, p, A,  p and v of the corresponding 
Higgs potential are not all independent-in fact they are not even independent of the 
gauge and Yukawa coupling constants. The results we have derived in this paper can be 
directly applied in the minimisation of the Higgs potential in the supersymmetric model. 
The details of this application of our results will be treated in a separate publication. 
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Appendix 

The purpose of this Appendix is to derive a partial set of conditions on the coupling 
constants a, b, A,  a,  and p which are necessary if the potential V(H,  A )  given by 
equation (2) is to be bounded from below. As explained briefly in the text, we shall not 
derive the necessary and sufficient conditions. V(H,  A )  is a quartic polynomial in, 
essentially, nine SU(3) fields, namely A(8) ,  A,, A,,, A,,,, Ao, A,, H, H4 and Hs,  which 
were defined in 9 3. Computationally this is a very difficult problem. 

Instead we shall examine a much simpler problem which leads to simple conditions 
on the coupling constants. The price we pay is that the resulting conditions are not 
sufficient to guarantee V ( H ,  A )  bounded from below. However, as all the conditions 
derived in such analyses yield lower bounds on the coupling constants, what we are 
doing is accepting slightly less stringent bounds at the lower end of the range of allowed 
values of the coupling constants. What we actually examine is the behaviour of V(H,  
A )  as all pairs of its arguments are separately allowed to vary all over field space. The 
generic terms which will be relevant in the analysis of the potential are of the form 

f l X 4 + f 2 Y 4 + f 2 X 2 Y 2 .  (AI)  

For a start we must have fl > 0 and f 2  > 0. We can then write (Al )  as 

Here the first term is positive semidefinite, and can vanish as x 2  and y 2  go to infinity. 
Since (A2) must be bounded for any values of x and y ,  we deduce that f3 > -2(flf~)~/' .  
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In this way we see that the three conditions 

f l>0, fZ>O and f 3  > - 2 C f 1 f 2 Y 9  (A31 

are necessary, and sufficient, to ensure that (Al)  is bounded from below. We now apply 
this analysis to the potential V(H, A) .  

This will entail expanding V(H, A )  in terms of the nine SU(3) fields and keeping the 
quartic terms which contain two, or less, fields. The result of this expansion can be 
partitioned into two groups of terms. The first of these is independent of the octet field 
A(S), while in the second all the terms contain the octet field. These two groups of terms 
are 

VI = ( a  +b)[(AI. A,)’+(AL. A,)’+(A~A,)’]+$(a +b)At 

+ t (a  +&b)A:+4A(Ht. H+H:H4+H:H5)’ 

+ 2aA:. A,A:. A,  + 2bAi. AYAL. A, 

+ 2 ( ~  +~)A?;A,(A:.A,+A:.A,) 

+ (U  +&)A;(A’;. A, +A:. A,)+(u + ~ ~ ) A ; A ; A ,  

+ ( U  + ~ ) A : ( A : .  A, +A:. A, +A~,A,)+&I + P ~ ) A ; A ’ ~  
+2aH’.H(A~.A,+A:.A,)+2P(Ht .A,A: .H+Hf.A,A~.H) 

+ [2aALA, + (a  + & ? ) A :  + aAt]H’. H 
+[(2a +/?)(Ai.A,+ALAW)+2aA1.A, 
+(CY +&/?)A; + (a +$P)A:]Hl-I:H4 

+[(2a +/?)(A:. A, +ALA,) + 2aA:. A, 

+ (a  + j$i@)A: + (a  +$P)A:]H&S 

and 

V2 = $u(T~A(S)’)~+&(T~A(S)~)  + (4b/./”;-Ao(TrA(8)3) 

+ 2b[iA:TrA(S)’ +A~A(S)’A, +A:A(S)’A,] 

(-44) 

+&[A; +A: +2(Ai .A, +A:.  A,  +AkA,)1TrA(S)2 

+ a ( H t .  H +  HiH4+H:H5)Tr A(S)’+PHtA(8)’H. (A5? 

Applying the inequalities (A3) to VI will lead to the following conditions: 

Before we can derive the remaining conditions by applying the inequaliities (A3) to V,, 
we should use a particular field parametrisation for the octet A(8). The result is the 
following pair of conditions, which must be considered together with (A6): 

a+&>O and min[cu, a +;PI> -$[A(u e$>]’’’. (A7) 
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It is clear that (A6) and (A7) are equivalent to the conditions (3) in § 2, and this is what 
we wished to achieve. 
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